
Salinas–Theory Manual

Garth Reese∗ Manoj K. Bhardwaj† Timothy Walsh‡

Sandia National Laboratories
Albuquerque, NM 87185-0847

June 9, 2003

∗Phone: 845-8640
†Phone: 844-3041
‡Phone: 284-5374



Revision: 1.1

Date: 2003/04/14 16:28:41

Latest Formal Release: 1.0



Abstract

This manual describes the theory behind many of the constructs in Salinas.
For a more detailed description of how to use Salinas , we refer the reader to
Salinas, User’s Notes.

Many of the constructs in Salinas are pulled directly from published ma-
terial. Where possible, these materials are referenced herein. However, certain
functions in Salinas are specific to our implementation. We try to be far more
complete in those areas.

The theory manual was developed from several sources including general
notes, a programer notes manual, the user’s notes and of course the material in
the open literature.
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1

1 Solutions

One thing which makes Salinas somewhat unique among the many mechanics codes
developed at Sandia National Labs is that Salinas combines a variety of different
solution procedures. These range from modal superposition based solutions to non-
linear transient. As described in the User’s Notes , these solutions can be combined
(or chained) in solution cases. This section of the manual describes the theory be-
hind these individual solutions. For details about particular finite elements, see
section 2.

1.1 Time integration

In this section we describe a generalized alpha time integration scheme, which is
described in Farhat, Crivelli, and Geradin, ’Implicit time integration of a class
of constrained hybrid formulations - Part I: Spectral stability theory’, CMAME,
125(1995), 71-107. Chung, J., Hulbert, G.M., ’A Time Integration Algorithm for
Structural Dynamics with Improved Numerical Dissipation: The Generalized alpha
method”, J. Applied Mech., Vol.60, pp. 371-375. (ref. 1 and 2).

1.2 Linear transient analysis

The modified equations of motion of the structure are

M [(1− αm)an+1 + αman] + Ĉ [(1− αf )vn+1 + αfvn] +
K [(1− αf )dn+1 + αfdn] = Fn+1+αf

(1)

where αf , αm are the integration parameters for the generalized α method, and
Ĉ = C + αM + βK. That is, the damping matrix is the sum of the standard
damping matrix C plus the proportional damping terms. Also,

Fn+1+αf
= F ((1− αf )tn+1 + αf tn) (2)

The time integration scheme is defined as follows

dn+1 = dn + ∆tvn +
∆t2

2
[(1− 2βn)an + 2βnan+1]

vn+1 = vn + ∆t [(1− γn)an + γnan+1]
(3)

where γn, βn are the integration parameters for the Newmark method.
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Substituting these equations into the modified equation of motion, and collecting
terms, we obtain

[
M(1− αm) + Ĉ(1− αf )∆tγn +K(1− αf )∆t2βn)

]
an+1 =

Fn+1+αf
− Ĉ(1− αf ) [vn + ∆t(1− γn)an]

−K(1− αf )

[
dn + ∆tvn +

∆t2

2
(1− 2βn)an

]
−M(αman)− αf (Ĉvn +Kdn)

(4)

We note that equation 4 still contains Ĉ, which in turn contains several terms. Thus
we substitute Ĉ = C + αM + βK into equation 4 and collect terms on both sides.
We then obtain

[M(1− αm + α(1− αf )∆tγn) + C(1− αf )∆tγn] an+1 +

K
[
(1− αf )∆t2βn + β(1− αf )∆tγn

]
an+1 =

Fn+1+αf
− C [(1− αf )(vn + ∆t(1− γn)an) + αfvn] −

K(1− αf )

[
dn + ∆tvn +

∆t2

2
(1− 2βn)an

]
+

K [αf (dn + βvn) + β(1− αf )(vn + ∆t(1− γn)an)] −
M [αman + ααfvn + α(1− αf )(vn + ∆t(1− γn)an)]

(5)

1.3 Nonlinear transient analysis

In the case of a nonlinear transient analysis, the equation of motion is

M [(1− αm)an+1 + αman] + Ĉ [(1− αf )vn+1 + αfvn] +
(1− αf )F int

n+1 + αfF
int
n = Fn+1+αf

(6)

where F int
n+1 and F int

n are the internal forces at the current and previous time steps,
respectively.

Using the tangent stiffness method, we replace F int
n+1 as

F int
n+1 = F int

n +Kt∆d (7)
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where Kt is the tangent stiffness matrix. Also, we use equation 3, which are the
same as in the linear case.

Collecting all terms together, we obtain the following equation[
M(1− αm) + Ĉ(1− αf )∆tγn) +Kt(1− αf )∆t2βn

]
∆a =

Fn+1+αf
−M [(1− αm)ã+ αman]

−Ĉ [(1− αf )ṽ + αfvn]− (1− αf )F̃ int + αfF
int
n (8)

where ã, ṽ, and F̃ int are the acceleration, velocity, and internal force from the pre-
vious Newton iteration. ∆a = ˜̃a− ã, where ˜̃a is the unknown acceleration from the
current Newton iteration. ã is computed simply by summing up all of the accelera-
tion changes for all previous Newton iterations and adding the result to an. F̃ int is
the internal force from the previous Newton iteration, and d̃, ṽ are defined by the
update equations

ṽ = vn + ∆t [(1− γn)an + γnã] (9)

d̃ = dn + ∆tvn +
∆t2

2
[(1− 2βn)an + 2βnã] (10)

Once ã, ṽ, and F̃ int are computed, the right hand side of equation 8 is known, and
the tangent stiffness matrix can be computed. Then equation 8 is solved for ∆a,
and subsequently all quantities are updated again to obtain the current Newton
iterate. We note that at the first Newton iterate, ã = an, ṽ = vn, and d̃ = dn. Also,
when the right hand side of equation 8 is equal to zero (or less than a prescribed
tolerance), convergence is obtained and thus ã = an+1, ṽ = vn+1, and d̃ = dn+1, i.e.
the converged values are for the n+ 1 time step.

We note that equation 8 can be written as

A∆a = res (11)

where A is the dynamic matrix, ∆a is the change in acceleration from the previous
Newton iteration to the current Newton iteration, and res is the residual, i.e. the
amount by which the equations of motion (equation 6) are not satisfied by the
current iterate. This is an intuitive way to view the solution process, since as the
residual (right hand side) goes to zero, the change in the Newton iteration will also
converge to zero.

1.4 Constraints on integration parameters

In order to achieve second order accuracy and unconditional stability, we need to
satisfy the following conditions

αm < αf <=
1
2
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γn =
1
2
− αm + αf

βn ≥
1
4

+
1
2
(αf − αm)

(12)

Rather than specify all of the above parameters in the input file, the original
paper by Hulbert (referenced above) reduces the number of parameters to one. In
addition, with this one parameter the others are computed in such a way that
maximized high frequency damping and minimized low frequency damping, while
still achieving second order accuracy and unconditional stability. Given 0 ≤ ρinf ≤ 1,
the other parameters are computed as

αm =
2ρinf − 1
ρinf + 1

(13)

αf =
ρinf

ρinf + 1
(14)

βn = 1/4(1− αm + αf )2 (15)
γn = 1/2− αm + αf (16)

(17)

1.5 Stability and numerical dissapation studies

In this section we present a simple example illustrating stability and numerical
dissapation properties. The example is a simple cantilever beam made from hex8
elements. The problem is solved on four processors. It is subjected to an impulse-
type loading that lasts for a very short time, and then allowed to vibrate freely.
The total energy (elastic + kinetic) is plotted versus time. Note that, for the
standard Newmark beta algorithm, the total energy should be conserved. The
results are shown in Figure 1. The case with no numerical damping and a tight
solver tolerance shows the constant energy, as expected. However, when the solver
tolerance is decreased, an instability is observed in the solid line. In the final case,
the same loose solver tolerance is set, but a small amount of numerical dissapation
is introduced through the parameters αf and βn. In this case, the solution is stable
and the energy decreases in time, as expected.

1.6 Random Vibration

Details of random vibration analysis are included in a number of papers1. These
few paragraphs document what was implemented.

1see for example, reference 3.
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Figure 1: Stability example. A beam of hex8’s solved using four processors and
varying solver tolerance.
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1.6.1 algorithm

The first step in the calculation is computation of Γqq, which is performed in
ComputeGammaQQ. This is accomplished as follows.

Let the modal frequency response be defined as,

qi(f) =
1

ω2
i − ω2 + 2jωωiγi

The modal force contribution from load a is,

Fi,a(f) =
∑
k

φikf
a
k sa(f)

= Zi
asa(f)

where fa
k is the k component of the force vector associated with load a, and sa(f)

contains all of the frequency content of the force, but none of the spatial depen-
dence. We have defined Zi

a for each load that represents the sum of all the spatial
contributions for mode i. It represents the frequency independent component of the
force for load a.

Zi
a =

∑
k

fa
kφik

A transfer function to an output degree of freedom, k, from the input load a, may
be written as a modal sum.

Hka(f) =
∑

i

Fia(f)qi(f)φik

where φik is the eigenvector of mode i.

1.6.2 Power Spectral Density

The displacement power spectral output (at a single location) is a 3× 3 matrix.

Gmn(f) =
∑
a,a′

H∗
ma(f)Hna′(f)

=
∑
i,j

∑
a,a′

F ∗
ia(f)q∗i (f)φimF

∗
ja′(f)qj(f)φjn

=
∑
i,j

∑
a,a′

q∗i (f)qj(f)φimφjnZ
i
aS

a,a′(f)Zj
a′

Here Sa,a′(f) is the complex cross-correlation matrix between loads a and a′. The
subscripts m and n are applicable to the 3 degrees of freedom at a single location.
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By summing over the loads we may reduce the power spectral expression to a
sum on modal contributions.

Gmn(f) =
∑
i,j

φimφjnGij(f) (18)

where
Gij(f) = q∗i (f)qj(f)

∑
a,a′

Zi
aZ

j
a′S

a,a′(f) (19)

Note that with the exception of the Zi
a (which may be computed only once and are

a fairly small matrix), all the terms in equation 19 are completely known on each
subdomain.

1.6.3 RMS Output

The RMS output for degree of freedom m is given by,

Xrms =

√∫
Gmm(f)df

=

√√√√∫ ∑
i,j

φimφjmGij(f)df

=
√∑

i,j

φimφjmΓij

where Γij =
∫
Gij(f)df .

The parallel result can be arrived at by computing Zi
a on each subdomain, and

then summing the contributions of each subdomain. Note that Zi
a contains the

spatial contribution of the input force. At boundaries that interface force must be
properly normalized just as an applied force is normalized for statics or transient
dynamics by dividing by the cardinality of the node. Once Z has been summed,
Γij may be computed redundantly on each subdomain. The only communication
required is the sum on Z (a matrix dimensioned at the number of loads by the
number of modes).

The acceleration power spectral density is just Gmm(ω)ω4. Subsection 2.16.5
provides details about transforming power spectra to an output coordinate system.

1.6.4 RMS Stress

A description of the algorithm for computation of the von Mises RMS stress is in-
cluded in the reference at the beginning of this chapter. Two methods are available,
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but both use the integrated modal contribution Γij as the basis for their computa-
tion. The more complete method relies on a singular value decomposition. Portions
of that method are touched on below

1.6.5 matrix properties for RMS stress

Since S(f) is Hermitian, it follows that Γqq is also necessarily hermitian. It will
not in general be real. Therefore, the svd() must be computed using complex
arithmetic. We use the zgesvd routine from arpack. The results from the svd of
an hermitian matrix are real eigenvalues (stored in X), and complex vectors, stored
in Q.

At the element level another svd must be performed. In this case we are com-
puting the singular values of the matrix C.

C = XQ†BQX

where,
B = ΨTAΨ

Obviously, B is symmetric. It can be shown that Q†BQ is hermitian. If we examine
a single element of C we can see that it contains the sum over all the terms in an
hermitian matrix. That sum is necessarily real, since it can be computed by adding
the lower half with it’s transpose and then summing the diagonal. Let,

Aij =
∑
m,n

Q∗
miBmnQnj =

∑
m,n

aij

But,
A∗

ji =
∑
m,n

Qm, j ∗BmnQ
∗
ni =

∑
m,n

QnjBmnQ
∗
mi =

∑
m,n

a∗ij

We therefore only need use the real svd routines to compute the results at each
output location.

1.6.6 model truncation

The svd calculations provide the information needed for model truncation. In gen-
eral, if the size of the model grows, the number of modes required for an analysis also
grows. The relationship is very model dependent. However, the computational time
for calculating the svd varies as the cube of the dimension of the matrix. Since the
svd(Γ) is only computed once, it is not terribly important. However, the computa-
tion of each decomposition of C occurs at each output location and can significantly
affect performance. In the model problem where the dimension of C was allowed to
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remain the same as the number of modes, increasing the number of modes from 20
to 100 changed the time for the analysis by factor of more than 100 (close to the
53 one might expect). Clearly, this is unacceptable especially as the desired models
may have many hundreds of modes.

The svd(Γ) provides important information about the number of independent
processes. Note that C includes the svd values from this calculation. We truncate by
computing all the nmodes x nmodes terms in B, but only retaining Cdim columns of
Q, where Cdim is chosen so the values ofX are not too small. Thus, X[(Cdim)]/X[0] >
10−14. This restricts the dimension of C to a fairly small number, while retaining
all components that contribute significantly to its value. As a result, the entire
calculation appears to scale approximately linearly with the number of modes.

1.7 Modal Frequency Response Methods

The Salinas implementation of the modal acceleration method is described in this
section. Separate cases are considered when the structure does and does not have
rigid body modes.

1.7.1 No Rigid Body Modes

We first consider the frequency domain version of the equations of motion.

(−ω2M + jωC +K)û = f̂ (20)

Consider the modal approximation

û ≈
N∑

i=1

φiqi (21)

where N is the number of retained modes, φi is the i’th mode shape, and qi is the
i’th modal dof. For modal damping, one obtains the uncoupled equations

(−ω2mi + jωci + ki)qi = φT
i f̂ (22)

for i = 1, . . . , N where

mi = φT
i Mφi (23)

ci = φT
i Cφi (24)

ki = φT
i Kφi (25)

(26)
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are the modal mass, modal damping, and modal stiffness of the i’th mode. Solving
equation 22 for qi leads to

qi = (φT
i f̂)/(−ω2mi + jωci + ki) (27)

Replacing (−ω2M + jωC)û in equation 20 with the modal approximation

(−ω2M + jωC)
N∑

i=1

φiqi (28)

leads to

Kû = f̂ + (ω2M − jωC)
N∑

i=1

φiqi (29)

Recall that the mode shapes satisfy the eigenproblem

Kφi = ω2
iMφi (30)

where ωi is the circular frequency of the i’th mode. Provided ωi 6= 0, one obtains

K−1Mφi = φi/ω
2
i (31)

In addition, see Eq. (18.14) of Craig, the damping matrix C can be expressed as

C =
N∑

i=1

(
2ζiωi

mi

)
(Mφi)(Mφi)T (32)

where ζi is the damping ratio of the i’th mode. Substituting equations 31 and 32
into equation 29 and solving for û leads to

û = K−1f̂ +
N∑

i=1

(ω2/ω2
i − 2ζijω/ωi)φiqi (33)

The acceleration frequency response, â, can be obtained by multiplying equation 33
by −ω2.

1.7.2 Rigid Body Modes

The procedure outlined here describes how the modal acceleration method can be
used in the case when the structure has rigid body modes. The main difference
between the approach presented here and Craig’s method4 (pp. 368-371) is in the
way that the flexible response is computed using the singular stiffness matrix. Craig
removes the rigid body modes from the stiffness matrix using constraints. In our
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approach, we first orthogonalize the right hand side with respect to the rigid body
modes, and then use FETI to solve the singular system directly. Although the two
methods are equivalent the latter is much more convenient from the implementation
point of view. Note, however, that the implementation is likely to fail on a single
processor since the direct solvers are unable to manage a singular stiffness matrix.

The equations of interest are the frequency domain equations of motion

−ω2Mu+ jωCu+Ku = f (34)

Since the stiffness matrix may be singular, we first split the solution into a rigid
body part and a flexible part.

u(ω) = uR(ω) + uE(ω) (35)
= ΦRqR(ω) + ΦEqE(ω) (36)

where the subscript R refers to rigid body mode contributions, and E refers to contri-
butions from flexible modes. We define N as the total number of degrees of freedom,
NR as the number of rigid body modes and NE the number of flexible modes, where
N = NR +NE . Then, ΦR is an NxNR matrix of rigid body eigenvectors, ΦE is an
NxNE matrix of flexible eigenvectors, qR is a vector of dimension NR, and qE is a
vector of dimension NE . We assume mass normalized eigenvectors.

We now substitute equation 36 into equation 34, and premultiply both sides by
ΦT

R and ΦT
E . This yields two sets of equations, after using orthogonality and the fact

that KΦR = 0.

−ω2qR + jωCRqR = ΦT
Rf (37)

−ω2qE + jωCEqE +KEqE = ΦT
Ef (38)

where CR, CE are diagonal matrices containing the modal damping contributions,
and KE is a diagonal matrix containing the eigenvalues. In particular, the ith
diagonal entry of CE is 2ωiζEi , and the ith diagonal entry of CR is 2ωiζRi . For most
applications, CR is null. Solving these equations we obtain the component-wise
values of the coefficients

qRi =
ΦT

Ri
f

−ω2 + jωCRi

(39)

qEi =
ΦT

Ei
f

−ω2 + jωCEi + ω2
E

(40)

Equation 38 can be solved for qE , and substituting this into equation 36, we
obtain
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u = ΦRqR + ΦEK
−1
E ΦT

Ef + ω2ΦEK
−1
E qE − jωΦEK

−1
E CEqE (41)

The first term in equation 41 is known. The third and fourth terms of equation
41 can be computed by modal truncation, and in fact these are the same as the
second and third terms of equation 33. The second term in equation 41 is the static
correction, and is not readily computable in the present form since all of the flexible
modes would have to be known to compute it.

In order to compute the second term in equation 41, we note that the matrix
aE = ΦEK

−1
E ΦT

E is the inverse of the elastic stiffness matrix, that is, the stiffness
matrix without the rigid body components. Craig gives a procedure of constraining
the rigid body modes in the stiffness matrix in order to compute the product aEf .
This procedure would require re-sizing the global stiffness matrix midway through
the modalfrf solution procedure, and this is tedius from the code development stand-
point.

A more convenient approach is to use FETI to solve the system Ku = fE , where
fE is obtained by orthogonalizing the right hand side f with respect to the rigid
body modes, via Gram Schmidt. We note that FETI can solve problems of the form
Ku = f even if K is singular, provided that the right hand side f is orthogonal to
the rigid body modes.

The procedure is to first apply Gram Schmidt orthogonalization to obtain fE .
Then, we use FETI to solve the system KuE = fE , where K is singular. Finally,
to be sure uE is orthogonal to the rigid body modes, we apply Gram Schmidt
one more time to uE . Though in theory uE is already orthogonal to the rigid
body modes after the FETI solve, numerical roundoff may result in a small loss
of orthogonality (especially if the solver tolerance is loose), and thus we apply this
final orthogonalization to uE to be on the safe side. The resulting solution we again
denote by uE . Then,

uE = ΦEK
−1
E ΦT

Ef (42)

and thus all of the terms in equation 41 are known. Thus the modal frequency
response can be computed using equation 41.

We note that the orthogonalizations refered to above involve only the standard
dot products. That is, in order to make f orthogonal to one rigid body mode φi,
the Gram Schmidt factor is

α =
φT

i f

φT
i φi

(43)

and then
fE = f − αφ (44)
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The dot products appearing in these expressions do not involve the mass matrix.
They are the standard dot products.

1.7.3 Example

Finally, we present an example of the performance of this method as compared to
the stndard modal displacement method. The example is a beam composed of 320
hex8 elements. The beam is free-free, so that all rigid body modes are present. The
frequency response is computed up to 9000 Hz, and 15 modes are used in the modal
expansions. The 15th mode had a frequency of 11362 Hz. In Figure 2, the two
methods are compared with the direct frequency response approach. It is seen that
the modal acceleration method gives a significantly improved performance over the
modal displacement method.
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Figure 2: A comparison of the modal displacement, modal acceleration, and di-
rect frequency response approaches. The modal acceleration method gives a better
approximation to the direct approach than the modal displacement method.
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2 Elements

Structural dynamics is a rich and extensive field. Finite element tools such as
Salinas have been used for decades to describe and analyze a variety of structures.
The same tools are applied to large civil structures (such as bridges and towers), to
machines, and to micron sized structures. This has necessarily led to a wealth of
different element libraries. Details of these element libraries are presented in this
section. For information on the solution procedures that tie these elements together,
please refer to section 1.

2.1 Isoparametric Solid Elements. Selective Integration

The following applies to any solid isoparametric element, but is implemented in code
on elements with linear shape functions (such as hex8 or wedge6). This discussion
addresses calculation of relevant operators on the shape functions and eventual
integration into the stiffness matrices. 2

2.1.1 Derivation

We begin with the separation of the strain into deviatoric and dillitational parts so
that their contributions to the stiffness matrix can be computed separately. This is
part of the strategy for avoid ing overstiffness with respect to bending.

The strain energy density in the case of an isotropic, linearly elastic material is:

p =
1
2
(2Gε+ λtr(ε)I) • ε (45)

with some re-arrangement, this can be shown to be:

p = Gε̂ • ε̂+
1
2
β(tr(ε))2 (46)

where ε̂ = ε− 1
3 tr(ε)I.

Having separated the part of the strain energy density due to deviatoric part of
the strain from the part of the strain energy density due to the dillitational part
of the strain, we shall integrate them separtely. First, we must determine how to
express the strains in terms of nodal degrees of freedom.

We know that the deformation field is linear in the nodal degrees of freedom and
that the displacement gradient is also, so we should be able to expand each of those
quantities as follows.

2This development is based on work by Dan Segalman.
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Let Pj be the node associated with the jthe degree of freedom and let sj be the
direction associated with that degree of freedom. The displacement field is:

~u(x) = ÑPj (x)uPj
sj ~esj (47)

where summation takes place over the degree of freedom j.
Similarly, the displacment gradient is:

~∇~u(x) = (
∂

∂xk
)ÑPj (x)uPj

sj ~esj~ek (48)

We now define the shape deformation tensor W j corresponding to the j th nodal
degee of freedom:

W j(x) = (
∂

∂u
Pj
sj

)~∇~u(x) (49)

which, with Equation 48 yields:

W j(x) = (
∂

∂xk
)ÑPj (x)~esj~ek (50)

The symmetric part of this tensor is:

Sj(x) =
1
2
(W j(x) +W j(x)T ) (51)

and the strain tensor is
ε(x) = Sj(x)uPj

sj (52)

From the above, we construct the dillatational and deviatoric portions of the
strain in terms of the nodal displacement components:

tr(ε(x)) = bj(x)uPj
sj (53)

where
bj(x) = tr(Sj(x)) (54)

Similarly,
ε̂(x) = B̂j(x)uPj

sj (55)

where
B̂j(x) = Sj(x)− 1

3
bj(x)I (56)

The stiffness matrix is evaluated using the consitutive equation (Equation 46)
and the following definition:

Km,n =
∂2

∂uPm
sm ∂u

Pn
sn

∫
volume

p(x)dV (x) (57)
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This plus our expressions for strain in terms of the nodal degrees of freedom yield
us the following expression for element stiffness:

Km,n = G

∫
volume

(B̂m(x))T • B̂n(x)dV (x) (58)

+β
∫

volume
bm(x)bn(x)dV (x) (59)

The issue of selective integration in the elements is discussed in a Framemaker
file /home/djsegal/MPP/notes/IsoInt.frm. The formulation discussed there applies
to all the isoparametric solid elements.

2.2 Quadratic Isoparametric Solid Elements

Quadratic elements (elements with bilinear or higher order shape functions) such as
the Hex20 and Tet10 are naturally soft and do not need to be softened by positive
values of G and β (see section 2.1 and the associated Framemaker file IsoInt.frm for
definitions of G and β.) Therefore, G=0 and β=0 are good values for such elements.

2.3 Wedge elements

2.3.1 Shape Functions

The shape functions are given explictly in Hughes. These are provided as bi-linear
polynomials in r, s, t, and ξ, where r and s are independent coordinates of the trian-
gular cross-subsections, t = 1− r− s, and ξ is the coordinate in the third direction.
For our purposes, it is necessary to expand the shape functions as polynomials in r,
s, and ξ:

Nk = Ak
0 +Ak

1r +Ak
2s+Ak

3ξ +Ak
4rξ +Ak

5sξ (60)

The shape functions and the coefficients are given in the following table:
Shape Function A0 A1 A2 A3 A4 A5

N1 = 1
2(1− ξ)r 1

2 -1
2

N2 = 1
2(1− ξ)s 1

2 −1
2

N3 = 1
2(1− ξ)t 1

2 -1
2 -1

2 -1
2

1
2

1
2

N4 = 1
2(1 + ξ)r 1

2
1
2

N5 = 1
2(1 + ξ)s 1

2
1
2

N6 = 1
2(1 + ξ)t 1

2 -1
2 -1

2
1
2 -1

2 -1
2

2.3.2 Quadrature

Three reasonable quadratures for wedges that come to mind are indicated in the
following table:
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No. Points r s ξ

1 1/3 1/3 0
2 1/3 1/3 -1/

√
3

1/3 1/3 1/
√

3
6 1/6 1/6 -1/

√
3

1/3 1/6 -1/
√

3
1/6 1/3 -1/

√
3

1/6 1/6 1/
√

3
1/3 1/6 1/

√
3

1/6 1/3 1/
√

3

2.4 Tet10 elements

The 4-point integration is given in Hughes (see 5), and the 16-point integration is
given in Jinyun. It is believed that a higher order integration is needed for the mass
matrix than the stiffness matrix and that the reason is that the mass matrix involves
higher degree polynomials. (Using 4-point integration to try to estimate the mass
matrix of a natural element resulted in a 30 by 30 mass matrix with several zero
eigenvalues.)

2.5 Notes on calculating shape functions and their gradients for
the Hex20 element

See file Hex20.frm, which is a Framemaker file with a detailed description of how
the shape functions and their gradients are calculated for the Hex20 element.

2.6 Anisotropic Elasticity

Anisotripic elasticity requires special care in the rotation of the matrix of matrerial
parameters when those parameters are given in some coordinate system other that in
which the element matrices are calculated. A derivation of the formulae for rotating
those matrices is given in a framemaker file

/home/djsegal/MPP/notes/anisoConst.frm.

2.7 Triangular Shell Element

The triangular shell element (TriaShell) is derived as follows. The bending d.o.f.
(w, θx, θy) and the membrane d.o.f. (u, v, θz) are decoupled. The idea is to obtain
the membrane response using Allman’s triangle and the bending response using the
discrete Kirchoff triangular (DKT) element.
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2.7.1 Allman’s Triangular Element

Using the formulation given in Ref. 6 and replacing cos(γij) = yji

lij
and sin(γij) =

−xji

lij
, we get

u = u1ψ1+u2ψ2+u3ψ3+
1
2
y21(ω2−ω1)ψ1ψ2+

1
2
y32(ω3−ω2)ψ2ψ3+

1
2
y13(ω1−ω3)ψ3ψ1

(61)

v = v1ψ1+v2ψ2+v3ψ3+
1
2
x21(ω2−ω1)ψ1ψ2−

1
2
x32(ω3−ω2)ψ2ψ3−

1
2
x13(ω1−ω3)ψ3ψ1

(62)
The stiffness and mass matrices ([K]AT , [M ]AT ) are found using general finite

element procedures. Unfortunately, a mechanism exists for this element if the de-
formations are all zero and the rotations are all the same value. Cook et al.7 have
a “fix” for this which has been implemented to avoid undesirable low energy modes
produced by this mechanism.

2.7.2 Discrete Kirchoff Element

As for the DKT8 element, things are not so simple. The nine d.o.f. element is
obtained by transforming a twelve d.o.f. element with mid-side nodes to a triangle
with the nodes at the vertices only. This is obtained as follows. Using Kirchoff
theory, the transverse shear is set to zero at the nodes. And the rotation about
the normal to the edge is imposed to be linear. Using these constraints, a nine
d.o.f. bending element is derived (DKT) using the shape functions for the six-node
triangle. Unfortunately, the variation of w over the element cannot be explicitly
written. Therefore, the w variation over the element needs to be calculated before
the mass matrix can be obtained.

As stated, the equation for w is not explicitly stated over the element in the
derivation by Batoz at al.. Using a nine d.o.f. element, a complete cubic cannot
be written, since 10 quantities would be needed to get a unique polynomial. The
strategy taken here is that the stiffness matrix produced using for the DKT element
provides reasonable results, and the derivation of the mass matrix is not as critical.
So, the equation for w is taken from Ref. 9, as

w = α1ψ1+α2ψ2+α3ψ3+α4ψ1ψ2+α5ψ2ψ3+α6ψ3ψ1+α7ψ1
2ψ2+α8ψ2

2ψ3+α9ψ3
2ψ1

(63)
For the AT and DKT elements, the stiffness and mass matrices are derived

with the help of Maple. The consistenet mass matrix is derived using “normal”
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DOF AT/DKT ABAQUS AT/DKT!
x 0.000 0.000 0.000
y 0.000 0.000 0.000
z -1.405 × 10−2 -1.398 × 10−2 -1.398 × 10−2

θx 3.337 × 10−2 3.337 × 10−2 3.337 × 10−2

θy 3.106 × 10−2 3.089 × 10−2 3.089 × 10−2

θz 0.000 0.000 0.000

Table 1: Comparison of deflections at Node 2

finite element procedures. If a lumped mass matrix is requested then the mass
matrix terms associated with the translation d.o.f. are found in the “normal” sense.
However, mass matrix terms for the rotational d.o.f. are set to 1

125 of the translation
terms.

In summary, the code has been written which uses the AT and DKT element
use in combination as a shell element. The stiffness matrices are calculated without
complication. The mass matrix for the AT element is also derived without com-
plication. The mass matrix for the DKT element is derived using an incomplete
polynomial, but the results obtained should not be effected very much.

2.7.3 Verification and Validation

The AT element is verified by comparing calculated results with the results published
by Allman in Ref. 6. The square plate in pure bending and a cantilvered beam with
a parabolic tip load are used as verification examples. The mass matrix is not
verified except to note that the mass is conserved in the u, v directions.

The DKT element is validated by using the experimental data published by
Batoz et al. in Ref. 8 for a triangular fin. The first 10 eigenvalues for the triangular
fin (cantilever) match very well. In addition, the DKT element is verified by using a
cantilevered beam and matching deflection results at the tip. If ν = 0, then results
should match very closely with Euler-Beam theory results, and they did.

Finally, the AT/DKT element is verified by comparing with published results
from Ref. 10. Tables 1 and 2 show that our elements match exactly with ABAQUS
to the number of digits shown. The first column is the result produced by Ertas et
al., the second column is the result produced by ABAQUS, and the third column is
the result produced by SALINAS using this DKT/AT element.
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DOF AT/DKT ABAQUS AT/DKT!
x 0.000 0.000 0.000
y 0.000 0.000 0.000
z 1.949 × 10−2 1.955 × 10−2 1.955 × 10−2

θx 3.363 × 10−2 3.363 × 10−2 3.363 × 10−2

θy -2.686 × 10−2 -2.702 × 10−2 -2.702 × 10−2

θz 0.000 0.000 0.000

Table 2: Comparison of deflections at Node 3

2.8 Two Node Beam

This is the definition for a Beam element based on Cook’s development (see pp
113-115 of reference 7).

The beam uses underintegrated cubic shape functions. Only isotropic material
models are supported. Torsional affects are accounted for in the axis of the beam.
The beam is uniform in area and bending moments, i.e. they are not a function of
position in the beam.

The following parameters are read from the exodus file.

1. The cross subsectional area of the beam (Attribute 1)

2. The orientation of the beam (Attributes 2, 3 and 4)

The orientation should not be aligned with the beam axis. In the event of an
inproperly specified orientation, a warning will be written, and a new orienta-
tion selected. The orientation is an x,y,z triplet specifying a direction. It does
not need to be completely perpendicular to the beam axis, nor is it required
to be normalized. The orientation vector, and the beam axis define the plane
for the first bending direction.

3. The first bending moment, I1. (Attribute 5).

4. The second bending moment. I2. (Attribute 6).

5. The torsional moment, J. (Attribute 7).

2.9 Truss

This is the definition for a Truss element based on pages 214-216 of Cook (ref 7).
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The truss uses linear shape functions. Unlike the truss elements used by Nastran,
there is no torsional stiffness. The truss is uniform in area, i.e. the area is not a
function of position in the truss.

The following parameters are read from the exodus file.

1. The cross subsectional area of the truss (Attribute 1)

2.10 Springs

The Spring element is the simplest one dimensional element. It has no mass. Entries
in the stiffness matrix are added by hand. Note the following.

• The force generated in a Spring element should be colinear with the the nodes.
Typically spring elements connect coincident nodes so that no torques are
generated.

• Springs attach 3 degrees of freedom. In the event that some of the spring
constants are zero, there is no effective stiffness for that associated degree of
freedom. However, the degree of freedom will remain in the A-set matrices.
This will be a problem if the other degrees of freedom are not attached to other
elements which provide stiffness entries connecting them to the remainder of
the model. For an understanding of the various solution spaces (such as the
A-set), see section 3.1.

The data for spring elements is entered in the input file. Three values are given,
Kx, Ky, and Kz. This results in a 6x6 element stiffness matrix,

K ′ =



Kx 0 0 −Kx 0 0
0 Ky 0 0 −Ky 0
0 0 Ky 0 0 −Kz

−Kx 0 0 Kx 0 0
0 −Ky 0 0 Ky 0
0 0 −Kz 0 0 Kz


Notice that K ′ is blocked. It could be written more simply,

K ′ =

(
K ′

11 K ′
12

K ′
12 K ′

11

)

The rotation matrix for the two endpoints is block diagonal. As a result, the
stiffness matrix in the basic coordinate system can be written,

K =

(
K11 K12

K12 K11

)
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where,
Kij = RTK ′

ijR

and R is the 3x3 rotation matrix of subsection 2.15.

2.11 Multi-Point Constraints, MPCs

A description of MPCs is contained in the users manual. This subsection discusses
the coordinate system dependencies.

MPCs may be defined in any coordinate system. However, all nodes in the MPCs
are defined in the same system. This is done for convenience in parsing, and not
for any fundamental reason. Consider a constraint equation where each entry in the
equation could be specified in a different coordinate system.∑

i

Ciu
(ki)
i = 0

where Ci is a real coeffient, and u(ki)
i represents the displacement of degree of freedom

i in degree of coordinate system ki. We can transform to the basic coordinate system
using u(ki)

i =
∑

j R
(ki)
ji u

(0)
j , where R(ki) is the rotation matrix for coordinate system

ki. Then we may write, ∑
i,j

CiR
(ki)
ji u

(0)
j = 0

or, ∑
i

C
(ki)
i u

(0)
i = 0

where C(ki)
i =

∑
j R

(ki)
ij Cj . Note however, that in this analysis, we have assumed

that the dimension of C is 3. Thus, rotation into the basic frame will likely increase
the number of coefficients.

Salinas is designed to support constraints through at least two methods. This in-
clude a constraint transform method and Lagrange multipliers. Lagrange multipliers
have not been implemented at this time.

2.11.1 Constraint Transforms

Constraints may be eliminated using the constraint transform method. This is
described in detail in Cook, chapter 9 (ref 7). In this method, the analysis set is
partitioned into constrained degrees of freedom and retained degrees of freedom.
The constrained dofs are eliminated.

Unlike many Finite Element programs, Salinas does not support user specifi-
cation of constraint and residual degrees of freedom. The partition of constrained
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and retained degrees of freedom is performed simultaneously in the “gauss()” rou-
tine. This routine performs full pivoting so the constrained degrees of freedom are
guaranteed to be independent. Redundant specification of constraint equations is
handled by elimination of the redundant equations and issue of a warning. User
selection of constrained dofs in Nastran has led to serious difficulty to insure that
the constrained dofs are independent and never specified more than once.

For constraint elimination we have a constraint matrix C = CcCr, where Cc is a
square, nonsingular matrix and Cr is the solution. We wish to solve for,

Crc = −[Cc]−1Cr

This is equivalent to the Gauss-Jordan elimination probrlem for Kx = b if we
let Cr = b, Cc = K and x = −Crc. There is one additonal wrinkle: we have mixed
the rows of C so Cc is intermingled with Cr. However, we only require that CC be
non-singular. Therefore if we do a gauss elimination with full pivoting we should
simultaneously obtain an acceptable reordering of C, and botain Crc.

In practice, it is not even necessary that Cc be non-singular. It is not uncommon
for two identical constraints to be specified. The program issues a warning and
continues.

Constraint transform methods do not currently support recovery of MPC forces.
The Gaussian elimination is presently being performed with a sparse package

called ”SuperLU,” instead of a dense gaussian elimination, to speed up the time to
create Crc. On some platforms, e.g., sgi and dec, the blas routine dmyblas2.c in the
CBLAS directory of of the SuperLU directory (need superlu-underscore-salinas.tar
to create this) should be the one and only routine whose object file is placed into
the SuperLU-blas library (presently called libblas-underscore-super.a) to be linked
in to create the salinas executable. Failure to include this routine will cause failures
of the type ”Illegal value in call to DSTRV” on the above platforms, and including
more than just dmyblas2.c can cause slow performance on many platforms as the
SuperLU-CBLAS could override the built-in blas routines. (The built-in routines
are almost always faster.)

2.12 Rigid Elements

Salinas supports standard pseudoelements for rigid bodies. These include,

• RRODs - a rigid truss like element, infinitely stiff in extension, but with no
coupling to bending degrees of freedom.

• RBARS - a rigid beam, 6 degrees of freedom deleted
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• RBE2 - a rigid solid. 6(n − 1) degrees of freedom deleted, where n is the
number of nodes

• RBE3 - an averaging type solid. This connects to many nodes, but removes
only 6 dofs.

All of the rigid elements are stored and applied internally as MPC equations.
The RBE2 is a special case of RBAR (actually just multiple instances). Note,
that unlike MPC equations, these rigid elements do activate (or touch) degrees of
freedom. In general, an MPC equation will not activate a degree of freedom. In the
case of a rigid element however, it is necessary to activate the degrees of freedom
before constraining them. Otherwise the rigid elements do not act like real elements.

Rigid elements are input into Salinas using exodus beam elements. A block entry
is then provided in the input file indicating what type of rigid element is required.
There is no stiffness or mass matrix entry for any type of rigid elements (only the
MPC entries described above).

2.12.1 RROD

An RROD is a pseudoelement which is infinitely stiff in the extension direction. The
constraints for an RROD may be conveniently stated that the dot product of the
translation and the beam axial direction for a RROD is zero. There is one constraint
equation per RROD.

2.12.2 RBAR

An RBAR is a pseudoelement which is infinitely stiff in all the directions. The
constraints for an RBAR may be summarized as follows.

1. the rotations at either end of the RBAR are identical,

2. there is no extension of the bar, and

3. translations at one end of the bar are consistent with rotations.

It is apparent that the last two of these constraints may be specified mathemat-
ically by requiring that the translation be the cross product of the rotation vector
and the bar direction.

~T = ~R× ~L

where ~T is the translation difference of the bar (defined as ~U2 − ~U1),
~R is the rotation vector, and
~L is the vector from the first grid to the second.
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The three constraints in the cross product, together with the three constraints
requiring identical rotations at both ends of the bar form the six required constraint
equations.

2.12.3 RBE3

The RBE3 elements behavior is taken from Nastran’s element of the same name.
Note however, that the precise mathematical framework of the Nastran RBE3 ele-
ment is not specified in the open literature. This element should act like an RBE3
for most applications. The element is used to apply distributed forces to many nodes
while not stiffening the structure as an RBE2 or RBAR would. The RBE3 uses the
concept of a slave node. Constraints are specified as follows.

1. The translation of the slave node is the sum of translations of all the other
nodes in the element.

2. The rotation of the slave node is the weighted average rotation of all the other
nodes about it.

While the first of these constraints is easy enough to apply using multi-point
constraints, the second is a little more difficult. We seek a least squares type solution.

Let ~Di = ~Ui − ~Uslave,
~Li = ~Xi − ~Xslave

The L represent a vector from the “origin” to the point i, while the Di represent
the differential displacement of the same points. Note that the origin is at the
location of the slave node, and will not in general be at the centroid of the structure.

We will use least squares to compute the rotational vector of the slave node.
This is equivalent to computing a rotational inertial term and requiring a similar
net rotation for the centroid.

The displacement at the centroid should be given by,

~Di = ~R× ~Li

or, in the least squares sense we seek to minimize E.

E =
∑

i

( ~Di − ~R× ~Li) · ( ~Di − ~R× ~Li)

Take the derivative of E with respect to a component of R, rk.

dE

drk
= 0 = 2

∑
i

(êk × ~Li) · (~R× ~Li)− ~Di · (êk × ~Li)
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Now, let R =
∑

m rmêm. We substitute for R in the previous equation to obtain,∑
m

∑
i

rm(êk × ~Li) · (êm × ~Li)− ~Di · (êk × ~Li) = 0

Now, if we write Li as a column vector then the expression (êk × ~Li) · (êm × ~Li)
can be written as LT

i Li · I − LiL
T
i . If the sum on i is performed for the first term,

we may write, ∑
m

rmAmk −
∑

i

êk · (~Li × ~Di) = 0

This provides three equations (one for each k) in the 3 unknowns, rm.
The solution is found by looping once through all i to fill in the A matrix,

and simultaneously to fill out the coefficients for the three equations involving Di.
Once the loop has been completed, the coefficients of R are known, and the three
components of rm can be added for each of the three equations. Each equation has
3 components of R, 2n components of Ui and 2 components of Uslave for a total of
2n+ 5 equations.

2.13 Shell Offset

Consider a shell offset, with an offset vector, ~v. Notice that ~v could be defined at
each nodal location in what follows, but for this development, we assume a single
offset ~v which applies to all nodes. Define a coordinate system at the node, with
variables u. On the offset beam the coordinate system is ũ.

Now, u is related simply to ũ. The constraint of a constant offset may be stated
that the displacement difference of the two systems must be orthogonal to ~v, i.e.
(u − ũ) = ~v × ~κ, where ~κ is the rotation at the nodes. Notice that the rotation is
the same at both nodes.

Thus we can write, (
ũ
κ

)
= [L]

(
u
κ

)
(64)

where L is a constant matrix which depends only on the geometry. We can use this
transformation matrix to eliminate the degrees of freedom associated with ũ. The
energy of the shell can be written,

Estrain = 0.5

{
ũ
κ

}T [
K̃
]{ ũ

κ

}
(65)

But with this substitution,

Estrain = 0.5

{
u
κ

}T [
LT K̃L

]{ u
κ

}
(66)
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If we let K = LT K̃L, then,

Estrain = 0.5

{
u
κ

}T

[K]

{
u
κ

}
(67)

Thus, ũ has been eliminated, and the equations may be rather simply put in
terms of the output variables.

2.14 Notes on Consistent Loads Calculations

Starting with equation 4.1-6 from Concepts and Applications of Finite Element
Analysis by Cook et al.,

{re} =
∫

Ve

[B]T [E]{ε0}dV −
∫

Ve

[B]T {σ0}dV +
∫

Ve

[N ]T {F}dV +
∫

Se

[N ]T {Φ}dS (68)

where each of these terms are defined in Subsection 4.1 of the above mentioned
reference. The load vector, {re}, is composed of four parts in Eqn. 68. In this
document, only the last part, which is the contribution of the surface tractions to
the load vector, will be considered. Rewritting,

{re} =
∫

Se

[N ]T {Φ}dS (69)

Here, the integral is calculated over the surface of the element on which the surface
traction, {Φ}, is applied. Therefore,

{Φ} = [ΦxΦyΦz]T (70)

and [N ] is the shape function matrix of the element on which the surface tractions,
{Φ}, are applied. In Salinas, {Φ} can be applied within PATRAN by applying a
spatial field to a specified side set. As a result, when calculating the load vector,
this field must be accounted for. In Salinas however, this spatial field values will be
available only at the nodes of the element. Using the nodal values of this surface
traction, the value inside must be defined using an interpolation function over the
surface or side of the element. Since only one value per node may be specified on
the side set in Salinas, a surface traction may be applied only in one direction at a
time. Therefore, {Φ} will be defined as

{Φ} =


nx

ny

nz

Φ(x, y, z) (71)
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2.14.1 Salinas Element Types

The following 3-D and 2-D elements have consistent loads implemented:

• Hex8

• Hex20

• Wedge6

• Tet4

• Tet10

• Tria3

• TriaShell

• Tria6 (four Tria3s)

• QuadT (twor Tria3s)

• Quad8T (1 QuadT and 4 Tria3s)

2.14.2 Pressure Loading

Here, we will consider only pressure loads on 3-D elements, such that

{Φ} =


Nx

Ny

Nz

Φ(x, y, z) (72)

where [Nx, Ny, Nz]T is the normal to the element face. Hence, the consistent loads
can be calculated as,

{re} =
∫

Se

[N ]T {Φ}dS =
∫

Se

[N ]T Φ(x, y, z)(~a×~b)dSe (73)

Here,

~a = [
∂x

∂r
,
∂y

∂r
,
∂z

∂r
]T (74)

~b = [
∂x

∂s
,
∂y

∂s
,
∂z

∂s
]T (75)

where Φ is the pressure load, and (x, y, z) are the physical coordinate directions,
and (r, s) are the local element directions for the face of the element. Notice, taking
the cross-product of ~a and ~b, the normal is obtained.



30 2 ELEMENTS

2.14.3 Shape Functions for Calculating Consistent Loads

For 3-D elements, all the faces are either quadrilateral or triangular shaped. Hence,
shape functions for quads and triangles could be used to evaluate the consistent
loads. If the shape functions for the 3-D elements are used, it will reduce code and
“fit” better into the current finite element class structure. This is what is currently
implemented. This requires a “mapping” of the 3-D elements’ faces to a 2-D plane.
The additional overhead for using the 3-D elements is that each face of the element
must have this “mapping” which states how the elements’ 3-D shape functions will
map to a 2-D element. For example, for a Hex20, the element coordiantes (η1, η2, η3)
are defined in a particular way. For each face of the Hex20, defined by a side id,
the face will have a local coordinate system (r, s). The “mapping” will define how
(r, s) are related to (eta1, eta2, eta3). This will also help defined what how 2-D
Gauss points are mapped to the 3-D face. These mappings are done for all the 3-D
elements.

2.14.4 Shell Elements - consistent loads

All the 2-D elements (shell elements) are based on the Tria3. The consistent loads
calculations for the Tria3 can be “copied” to the TriaShell. This way all the shell
elements will use the same consistent loads implementation. Since Carlos Felippa
designed the Tria3, his consistent loads implementation is used. The portion for
linearly varying pressure loads is shown here. If the loads are aligned along an edge,
{q}, they need to be decomposed into (qs, qn, qt). Where (s, n, t) are coordinate
directions along the element edge. Coordinate s varies along the element edge
tangentially, n is normal to the element edge, and t is tangent to the element edge
in the transverse direction, i.e., in the direction of the thickness. Once, the edge
load is decomposed, the equations for consistent loads are

f1
s =

1
20

(7qs1 + 3qs2)L21 f2
s =

1
20

(3qs1 + 7qs2)L21 (76)

f1
n =

1
20

(7qn1 + 3qn2)L21 f2
n =

1
20

(3qn1 + 7qn2)L21 (77)

f1
t =

1
20

(7qt1 + 3qt2)L21 f2
t =

1
20

(3qt1 + 7qt2)L21 (78)

m1
s = m2

s = 0 (79)

m1
n = − 1

60
(3qt1 + 2qt2)L2

21 m2
n =

1
60

(2qt1 + 3qt2)L2
21 (80)

m1
t = − 1

40
(3qn1 + 2qn2)L2

21 m2
t =

1
40

(2qn1 + 3qn2)L2
21 (81)
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where qs1 is the value of q in the s direction at node 1 of the edge, L12 is the length of
the edge. The superscipts 1,2 are the node numbers of the edge. Note, it is assumed
here that the load q is per unit length, but this is not assumed when creating the
sideset in PATRAN for example. Therefore, this distributed load is multiplied, in
Salinas, by the thickness of the triangle.
Now if the pressure load is on the face of the Tria3, the equations become,

f1
x = f1

y = m1
z = f2

x = f2
y = m2

z = f3
x = f3

y = m3
z = 0 (82)

f1
z = (

8
45
p1 +

7
90
p2 +

7
90
p3)A (83)

f2
z = (

7
90
p1 +

8
45
p2 +

7
90
p3)A (84)

f3
z = (

7
90
p1 +

7
90
p2 +

8
45
p3)A (85)

m1
x =

A

360
[7(y31 + y21)p1 + (3y31 + 5y21)p2 + (5y31 + 3y21)p3] (86)

m1
y =

A

360
[7(x13 + x12)p1 + (3x13 + 5x12)p2 + (5x13 + 3x12)p3] (87)

m2
x =

A

360
[(5y12 + 3y32)p1 + 7(y12 + y32)p2 + (3y12 + 5y32)p3] (88)

m2
y =

A

360
[(5x21 + 3x23)p1 + 7(x21 + x23)p2 + (3x21 + 5x23)p3] (89)

m3
x =

A

360
[(3y23 + 5y13)p1 + (5y23 + 3y13)p2 + 7(y23 + y13)p3] (90)

m3
x =

A

360
[(3x32 + 5x31)p1 + (5x32 + 3x31)p2 + 7(x32 + x31)p3] (91)

where yij = yi− yj and xij = xi−xj , A is the area of the triangle, pi is the value of
the pressure load at node i, and (xi, yi) are coordinates of the triangle in 2-D space.
Finally, the “pseudo” elements (QuadT, Quad8T, Tria6) created by using Tria3s
require a little extra overhead. For example, the Quad8T is composed of 1 QuadT
and 4 Tria3s. However, since it is defined as a Quad8T, it will have distribution
factors at its 8 nodes, and these distribution factors have to be mapped to the 1
QuadT and the 4 Tria3s. The number of distribution factors will be 3 however,
if the load is applied to its edge. Therefore, this extra coding can be seen in the
ElemLoad method of the shells’ classes.

2.15 Coordinate Systems

Coordinate systems are provided for a number of applications including:
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1. specification of boundary constraints (SPCs)

2. specification of multi-point constraints (MPCs)

3. specification of material property rotations for anisotropic materials.

4. specification of spring directions (see subsection 2.10).

5. specification of output coordinate systems (in history files only).

There are some applications for coordinate systems which we do NOT intend to
support. These include,

1. specification of nodal locations,

2. specification of new coordinate systems in any but the basic system.

Coordinate systems for cartesian, cylindrical and spherical coordinates may be
defined. In the case of noncartesian systems, the XZ plane is used for defining the
origin of the θ direction only.

Each coordinate system carries with it a rotation matrix. It is important to
clarify the meaning of that matrix. Specifically,

X ′ = RX

Where X ′ is the new system of coordinates, R is the rotation matrix and X is the
basic coordinate system. For cartesian systems, the rotation matrix is static. Curvi-
linear systems will require computation of a new rotation matrix at each location
in space.

The usual identity on rotation matrices applies, namely:

X = RTX ′ (92)

and
RTR = RRT = I

As an example, consider a cartesian system as shown in Figure 3.
The new system (marked by primes) is rotated θ from the old system with the

new X ′ axis in the first quadrant of the old system. The rotation matrix is,

R =

 cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1


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Figure 3: Original, and rotated coordinate frames

2.16 Constraint Transformations in General Coordinate Systems

In general, constraint equations can be applied in any coordinate system. We here
describe the transformation equations and implications for general constraints in
any coordinate system. The implications of this use in Salinas are also outlined.

Consider a constraint equation,

C ′u′ = Q (93)

where the primes indicate a generalized coordinate frame. The frame may be
transformed to the basic coordinate system using equation 92, and

u′ = Ru (94)

We can now rewrite equation 93,

C ′Ru = Q
Cu = Q

(95)

where C = C ′R.
Thus a general system of constraint equations may be easily transformed to the

basic system. Further, the rotational matrix is a 3x3 matrix which may be applied
to each node’s degrees of freedom separately.

2.16.1 Decoupling Constraint Equations

We still have a coupled system of equations. We partition the space into constrained
and retained degrees of freedom, and describe the constrained dofs in terms of its
Schurr complement.

u =

[
ur

uc

]
(96)
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The whole constraint equation may be similarly partitioned.

[
Cr Cc

] [ ur

uc

]
= [Q] (97)

Note that Cr is an cxr matrix, Cc is cxc, and Q is a vector of length c. Under most
conditions Q is null.

This may be solved for uc,

uc = C−1
c Q− C−1

c Crur (98)

We must be concerned with cases where Cc may be either singular or over con-
strained. The former case occurs if we try to eliminate c equations, but the rank
of C is less than c. This could occur if the equations are redundant. We can over
constrain the system only if Q is nonzero. Both these situations need attention, but
both can be dealt with.

We may also write the solution using a transformation matrix, T .[
ur

uc

]
= [T ] [ur] + Q̃ (99)

where

T =

[
1
Crc

]
(100)

Crc = −C−1
c Cr (101)

and

Q̃ =

[
0

C−1
c Q

]
=

[
0
Q̆

]
(102)

2.16.2 Transformation of Stiffness Matrix

We assume a similar partition of the stiffness matrix. The equations for statics are
then, [

Krr Krc

Kcr Kcc

] [
ur

uc

]
=

[
Rr

Rc

]
(103)

or,
[K] [T ]ur + [K]

[
Q̃
]

= R (104)

and
T TKTur = T T

{
R−KQ̃

}
= R̃ (105)
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We can define the reduced equations,

K̃ = T TKT = Krr +KrcCrc + CT
rcKcr + CT

rcKccCrc (106)

and,

R̃ = T TR− T T

[
KrcQ̆

KccQ̆

]
= Rr + CT

rcRc −KrcQ̆− CT
rcKccQ̆

(107)

The solution in the retained system is

K̃ur = R̃ (108)

The system may now be solved using the reduced equations, and the constrained
degrees of freedom may be solved using equation 98. Much of this is detailed in Cook,
but without the constrained right hand side.

For eigen analysis the mass matrix may be transformed exactly as the stiffness
matrix in equation 106. There is no force vector.

For transient dynamics the mass and stiffness matrix transform the same. The
force vector and force vector corrections may be time dependent. There is currently
no structure to store these time dependent terms in Salinas.

2.16.3 Application to single point constraints

Our initial efforts at applying single point constraints (SPC) has been limited to the
basic coordinate system. In that system the equations decouple, Cc is unity and Crc

is zero. Then equations 106 and 107 reduce to elimination of rows and columns.
To properly account for the coupling that occurs when the constraints are not

applied in the basic coordinate system, we must generate all the constraint equation
on the node. This may be up to a 6x6 system. I believe that there is no real conflict
in first applying constraints in the basic system, then adding additional constraints
in other systems.

The process for applying constraints can be summarized as follows.

1. Generate the constraint equation in the generalized coordinate system (equa-
tion 93).

2. Transform the constraint equation to the basic coordinate system (equation
94).

3. Determine the constraint degrees of freedom. It may need to be done in concert
with the next step to keep from degrading the matrix condition.
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4. Compute the two transformation matrices C−1
c and Crc from equations 97 and

101.

5. Compute the corrections to the force vector from equation 107. We currently
do not have a structure to store these corrections, except for the case of statics.

6. Compute the reduced mass and stiffness matrices from equation 106.

7. Eliminate the constraint degrees of freedom from the mass and stiffness matrix.

In addition, for post processing,

8. store the terms of the equations necessary to recover the constraint degrees of
freedom (equation 98).

A few words about post processing could also prove useful. In the first imple-
mentation of Salinas, constraints were applied only in the basic coordinate system.
The degree of freedom to eliminate was obvious from the exodus file, and it’s value
was a constant (usually zero). In this later version, a more general approach must
be used. We use the following strategy.

1. degrees of freedom directly constrained to zero are handled implicitly. This is
done by setting the G-set vector to zero before merging in the A-set results.
There is no storage cost for this.

2. Other degrees of freedom are managed using an spc info object. An array
of these objects will be stored globally. Each object contains the degree of
freedom to fill, an integer indicating the number of other terms, a list of
dofs/coefficients, and a constant. This facilitates solutions of the form,

uspc = constant +
retained dofs∑

i

uiCi (109)

2.16.4 Multi Point Constraints

The application to multipoint constraints is very straight forward. The only dif-
ference is that the whole system of equations must be considered together. This
changes the linear algebra significantly because the matrices must now be stored in
sparse format. However, the steps that are applicable for single point constraints
apply here as well. Subsection 2.11 deals more explicitly with MPCs.
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2.16.5 Transformation of Power Spectral Densities

Note: The following is taken almost verbatim from Paez’s book. We identify how
to transform output PDS.

Let H(f) denote a frequency response function vector for a given input (in the
global system) expressed as,

H(f) = H1(f)e1 +H2(f)e2 +H3(f)e3

where ei represents the unit vectors of this space. Note that H(f) is an output vector
at a single location in the model. H(f) can also be expressed using an alternate set
of unit vectors, ẽi.

H(f) = H̃1(f)ẽ1 + H̃2(f)ẽ2 + H̃3(f)ẽ3

Taking the dot product of these two equations and equating the results, we have,

H̃1(f) =
3∑

k=1

ckiHk(f) (110)

where
cki = ek · ẽi

The spectral density function Gij(f) (for a given input and at a single output loca-
tion) can be expressed as,

Gij(f) = αH∗
i (f)Hj(f) (111)

where α is a constant and superscript * denotes complex conjugate. Similarly for
the alternative coordinate frame,

G̃ij(f) = αH̃∗
i (f)H̃j(f)

We may use equation 110 to express G̃ in terms of the Hi. We may then use
the spectral definition in equation 111 to provide the transformation of spectral
densities.

G̃ij(f) = α

(
3∑

k=1

ckiH
∗
k(f)

)(
3∑

m=1

cmjHm(f)

)

=
3∑

k=1

3∑
m=1

ckicmjGkm (112)

This can be expressed in matrix notation as G̃ = CTGC.
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2.17 HexShells

Hexshells are provided to give the analyst an element with performance similar to
a standard shell, but with the mesh topography of a brick. Thus, thin regions of
the model can be meshed with hexshells, without concern for the bad aspect ratio
of the elements, and with topography consistent with a solid mesh.

The element is documented extensively in the description by Carlos Felippa (see
reference 11). The paragraphs in this document summarize the limitations of the
shells and the possible usage.

Because hexshells have an inherent thickness direction, it is important to be able
to identify that direction. There are (at least) four methods to accomplish this.

natural The natural ordering of the nodes in the element can determine the thick-
ness direction. This is the method used by Carlos in developing the element.
I believe that the connectivity for the element will indeed have to be modified
to properly interface to his software.

sideset The placement of a sideset on one (or both) thickness faces of the elements
uniquely identifies the thickness direction.

topology Usually the topology can be used to identify the thickness direction.
The hexshell should be used in a sheet. If the hexshells are considered alone,
only the free surfaces of the sheet are candidates for the thickness direction.
Further, once the thickness direction is established for one element, it must
propagate to the neighbors. (Note that this implies that we can’t have a self
intersecting sheet).

projection The thickness direction could be determined by the closest projection
to a coordinate direction.

We will try to support all of the above methods. The topology method puts the
least burden on the analyst. It is the least explicit however, and the most work
to implement (especially in parallel). The next simplest (for the analyst) is the
projection method. Sideset methods are burdensome for both the analyst and the
code development team. The natural method is the easiest to implement, but can
be next to impossible for the analyst to use.

Input will be structured as follows. Keywords are associated with each method.
Only one of the four keywords above can be entered. If no keyword is entered, then
topology is assumed.

Block 9
HexShell
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orientation sideset=’1,2’
material=9

end

or,

Block 10
HexShell
orientation topology
material=9

end
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3 Linear Algebra Issues

3.1 Solution Spaces

There are number of different dimensions in Salinas. These will be summarized here
with a focus on using the data within the matlab framework. Examples of how to
convert data from one dimensionality to another will be given.

The subject of matrix dimensions is an important one. Salinas has a fairly simple
set of dimensions compared to more complex systems like Nastran. However, it is
critical that these be well understood if we wish to manipulate the data.

As an example, I consider an eigen analysis of a structure with 9938 nodes. This
structure is made of shells and solids. There are no boundary conditions, but there
are 9 mpcs applied. I look at only the serial file sizes.

To get the required maps and other m-files, we must select ’mfiles’ in the output
section. To get the eigenvector data, we must also write the exodus file with ’disp’
selected in the output section.
For this model, we have the following important dimensions.

1. #nodes=9938

2. external set= #nodes * 6 dofs/node = 59628

3. G-set = # active dofs before boundary conditions = 42708

4. A-set = analysis set = # equations to be solved = 42699

5. reduced external set = #nodes * 3 = 29814

There are 3 dofs/node for solid elements, but shells and beams have 6. In aggregate,
the total dofs is 42708 before boundary conditions and mpcs are applied. There are
no BCs in the model, but there are 9 MPC equations, each of which eliminates 1
dof, so the Aset is reduced to 42699.

Unfortunately, the eigen disp*.m files are written in the reduced external set
since this is what the analysts typically want. The bad news is that these m-files
are useless to us. The good news is that all the data is available in either m-files
or in the exodus output.

The matrices Mssr and Kssr contain the mass and stiffness matrices in the A-set.
They are symmetric matrices and only one half of the off diagonal is stored. To get
the complete matrix within matlab,

>>> K = Kssr + Kssr’ - speye(size(Kssr)).*Kssr;

The full eigenvectors (in the external set) are available in the output exodus file. To
get them use the seacas command exo2mat.
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> exo2mat example-out.exo

Within matlab, the data can be converted to a properly shaped matrix.

>>> load example-out
>>> phi = zeros(nnodes*6,nsteps);
>>> tmp = (0:nnodes-1)*6;
>>> phi(tmp+1,:)=nvar01;
>>> phi(tmp+2,:)=nvar02;
>>> phi(tmp+3,:)=nvar03;
>>> phi(tmp+4,:)=nvar04;
>>> phi(tmp+5,:)=nvar05;
>>> phi(tmp+6,:)=nvar06;

We now have phi as a matrix with each column corresponding to an eigenvector.
However, phi is dimensioned at 59628 x 10 for this example. We clearly can’t
multiply phi by K for example - the dimensions don’t match. To do this we need a
map.

We have two maps in our directory. FetiMap a.m is the map from the external set
to the A set. Thus we can reduce phi to the A-set by combining it with Fetimap a.
If the G-set is desired instead of the A-set, replace FetiMap a with FetiMap.

>>> p2=zeros(max(max(FetiMap_a)),nsteps);
>>> for j=1:nnodes*6
>>> i=FetiMap_a(j);
>>> if ( i > 0 )
>>> p2(i,:)=phi(j,:);
>>> end
>>> end

This is slow. A faster, but less straightforward method is shown here.

>>> mapp1=FetiMap_a+1;
>>> tmp=zeros(max(max(mapp1)),nsteps);
>>> tmp(mapp1,:)=phi;
>>> p2=tmp(2:max(max(mapp1)),:);

Now we can do all the neat things like p2’*K*p2.
To get back to the external set, we again use this map. For example, if we have

a vector of dimension 42699,
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>>> x=1:42699’;
>>> XX = zeros(59628,1);
>>> for i=1:59628
>>> if ( FetiMap_a(i)>0 )
>>> XX(i)=x(FetiMap_a(i));
>>> end
>>> end

Obviously, similar shortcuts can be made to make this more efficient. One that
appears to work is shown here.

>>> xtmp=[ 0 x’];
>>> X2=xtmp(mapp1);
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